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The Specular Exponent as a Criterion for Appearance
Quality Assessment of Pearllike Objects
by Artificial Vision
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Abstract—For pearls and other smooth alike lustrous jewels, the
apparent shininess is one of the most important factors of beauty.
This paper proposes an approach to automatic assessment of
spherical surface quality in measure of shininess and smoothness
using artificial vision. It traces a light ray emitted by a point source
and images the resulting highlight patterns reflected from the
surface. Once the reflected ray is observed as a white-clipping level
in the camera image, the direction of the incident ray is determined
and the specularity is estimated. As the specular exponent is the
most important reason of surface shininess, the method proposed
can efficiently determine the equivalent index of appearance for
quality assessment. The observed highlight spot and specular
exponent measurement described in this paper provide a way to
measure the shininess and to relate the surface appearance with
white-clipped image highlights. This is very useful to industrial
applications for automatic classification of spherical objects. Both
numerical simulations and practical experiments are carried out.
Results of objective and subjective comparison show its satisfac-
tory consistency with expert visual inspection. It also demonstrates
the feasibility in practical industrial systems.

Index Terms—Classification, computer vision, quality measure-
ment, shininess index, specular exponent, surface appearance.

I. INTRODUCTION

ACH pearl has been elaborated by a unique living being.

Like other smooth lustrous jewels, the apparent shininess
is one of the most important factors of beauty. Unfortunately,
automation for pearl classification is rarely studied in the liter-
ature and there is no method available to assess the appearance
and quality of shininess. In the industry, many characteristics
may affect pearl’s quality but their assessment and classification
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are still done mostly by human intuitive judgments with very
expertised experience.

On the other hand, the recently developed artificial vision
technology, which simulates the subjective perception of hu-
man inspector [1], provides a convenient way for automatic
classification [2]. Many practical applications in robot vision
and inspection require interpretation of images of specular,
or shiny, surfaces where the perceived brightness becomes a
very strong function of viewing direction due to highlights
or reflections from the source [3]. Inspection and handling of
machine parts, inspection of the shape of solder joint surfaces,
and inspecting surface smoothness of metallic or plastic sheets
are examples of industrial tasks where surface specularity is a
primary consideration [4]. The interpretation of surfaces based
on the image brightness pattern of one or more images depends
intricately on the prior knowledge of surface properties, image
geometry, and light conditions. Vision sensing by shape from
shading (with single light source), photometric stereo (with
multiple light sources), structured lighting techniques, etc.,
have generally been used to recover three-dimensional (3-D)
shapes from one or more images [5]-[7].

Surface shininess is a key index in evaluation of some prod-
ucts like pearls and jewels. In fact, surface shininess is related
with its roughness and specularity [8], which have mostly been
affecting the function and reliability in industrial components
[9]. In the literature, it is well known that different kinds of
techniques and methods are used in modeling and measurement
of surface roughness [10]. It has been assessed by the judgment
of the inspector either by eye or even fingernail. The evaluation
was done by comparing the surface to be measured with a
standard surface. For an example of surface modeling and
image synthesis, Baba proposed a method to model roughness
as bump parameters using Gaussian distribution functions [15].
A modern typical surface measuring instrument will consist
of a stylus with a small tip (diamond) gauge or transducer, a
traverse datum, and a processor. The surface is measured by
moving the stylus across the surface. Among the mostly used
techniques on surface measurement, digital photogrammetry
with its measurement sensitivity, practicability, functionality,
and cost taken together is appealing to users [12].

This paper proposes an idea of automatic evaluation of pearls
or pearllike objects by observation of their surface appearance
and physical factors using artificial vision. In the industry, for
examining a pearl, some basic characteristics, such as the pearl
type, size, color, and shape, can be determined easily but the
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work is tedious and laborious. Advanced evaluation may be
made on its brightness and surface, as well as the homogeneity
of the threads. Numerous factors give rise of its classification,
but they do not directly determine the quality. In practice, one
factor, called shininess, may much affect the authenticity and
beauty of pearls.

In the literature, few attempts have been carried out for
pearl evaluation. Nagata, Dobashi, etc. are ones who made
early investigation of pearl appearance [13], [14]. For modeling
and visualization of an evaluation simulator, they proposed
an “analysis by synthesis” approach to finding the optimum
inspection conditions and inspection criteria through the sim-
ulation of the item [13]. An alternative method is carried out by
physics-based modeling of internal blurring in the multilayer
of a pearl and the partial coherent interference model [14]. Re-
cently, Tian proposed a computer vision-based method for pearl
quality assessment [15]. The color is the only feature consid-
ered for pearl classification. Images are transformed into hue,
saturation, and value (HSV) color space and fuzzy C-means
clustering algorithm is used for the classification of pearl satu-
ration. More intensive review for the background can be found
in [13]. This system in this paper is vision-based automatic
mechatronic system [16] for pearl classification [17]. The al-
gorithm presented uses highlight principle in artificial vision
and digital photogrammetry to extract surface light properties.
It combines advantages of both photogrammetry and vision
perception [18].

The rest of the paper is organized as follows. In Section II,
an automatic industrial system is introduced with vision assess-
ment. The formulation of specularity in the vision system with
lighting technology is described in Section III. Detailed theoret-
ical method for apparent shininess assessment is developed in
Section IV. Experiments are described in Section V and results
are discussed. Finally, a conclusion is drawn in Section VI.

II. AUTOMATIC ASSESSMENT SYSTEM

In design of the mechanical system for automatic pearl
inspection and classification [19], we have several principles:
1) During the whole classification process, it is desired to use
compressed air for pearl motion driven so that the pearl surface
will not be stained or worn; 2) to improve the productivity,
we may use a schooling pattern for quality evaluation; 3) for
the reasons of manufacturing cost and system maintenance, the
equipment is designed in modular structures; and 4) the system
should be reconfigurable for different purposes of evaluation or
classification. By these considerations, the system is designed
as in Fig. 1.

In mechanism, the equipment consists of three sub-systems,
i.e., mechanical, air-driven, and controlling. A pearl will pass
three workspaces for feeding, inspection, and classified sepa-
ration. The inspection station has a closed box where a point
light source and a vision camera are placed, as illustrated at
right side in Fig. 1. The system works in following operational
principles.

1) Unclassified pearls are controlled to flow into a microvi-
bration device and become a single layer. A plate with a
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matrix of fixed positions is used to suck up a number of
arranged pearls. Each pearl is attached to one elementary
hole by negative pressure.

2) The matrix plate is moved to the inspection station. Each
pearl can be rotated there and six images are taken to ob-
serve the pearl surfaces from all views. A vision process-
ing procedure is carried out for analysis of the quality
of the pearls with these images. In this implementation
example, the pearl diameter can vary from 3 to 15 mm.
Each time it can inspect 100 pearls simultaneously.

3) The matrix plate is further moved to a separation station
where pearls are sent to different output collections ac-
cording to the classification results.

The pearl classification system consists of five phases in
a period, which includes functions of pearl feeding, imaging,
orienting, vision processing, and separating. Table I illustrates
the working cycle of these phases. On the continuous working
line, since phases 1-3 are overlapped with 4 and 5. It can be
seen that the period is dominated by the latter, i.e., time =
2.5 + 5 = 7.5 seconds on the line of one side. The productivity
in this example is 13.3 pieces/s (pps).

As can be seen in Fig. 1, the system consists of two working
groups that can improve the productivity to double. Its function
of classification can be executed according to five evaluation
characteristics, including diameter, shape type, color, blemish,
and shininess. The former four can be directly determined from
the pearl images as illustrated in Fig. 2. In fact, the object size
can be determined by d = (D1 + D5)/2. D; is the maximum
diameter or the longest chord, and it can be determined by
finding the maximum distance between any two points on the
contour. D5 is the maximum length of the chords orthogonal to
D;. Regarding the blemish, the pearls are ranked into I, II, III,
IV, and V levels according to the flaws detected on the surface.
The flaw can be identified in the image according to the color
speckle and the level is determined according to the total area
size of these speckles. The shape type is classified according to
Table II.

The pearl color is classified into basic types of white, yellow,
purple, although other colors may also be used according to
practical requirement. The image is converted into HSV color
space and the type is determined by similarity, i.e., the spatial
distance in color space, according to Table III.

However, the pearl shininess, one of the most important
factors of its beauty, is difficult to be determined directly. In
this paper, we utilize the specular exponent of lighting effect as
a cue of its appearance quality.

III. FORMULATION OF SPECULARITY
A. Specular Surface Reflection

An important class of surface is the glossy or mirrorlike sur-
face often known as a specular surface [20]. An ideal specular
reflector behaves like an ideal mirror. Radiation arriving along a
particular direction can leave only along the specular direction,
obtained by reflecting the direction of incoming radiation about
the surface normal. Usually some fraction of incoming radiation
is absorbed; on an ideal specular surface, the same fraction
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Fig. 1. Mechatronics system for automatic pearl inspection and classification.
TABLE 1 TABLE 1I
WORKING PHASES OF THE PEARL CLASSIFICATION SYSTEM SHAPE CLASSIFICATION OF PEARLS
Phase 1 2 3 4 5 Shape type Classification condition
Feeding via rotation for separation Perfect dx=(D;-D,)/a*100%=<3%
Imaging 6 times Circle  |Normal dx=(D;-D,)/a*100%=<8%
Orienting 5 poses Approx dx=(D;-D,)/a*100%=12%
Separating matrix Ellinse Long dx=(D-D,)/a*100%>20%
Vision Processing 100 x 6 P Short dx=(D;-D,)/a*100%, 12%<dx<20%
Time (s) 2.5 3 2.5 5 Flat 4-faced Circular on one side
Period (s) (2.5+5)<2=15* 2-faced Much different curvature on two sides
Efficiency 100x2/15=13.3 pps et Sharp Shape like water drops
Poor Irregular, unsymmetrical
C0o0o00ODODD *a=(Dy+Dy)2.
coocoo0oo00 Q0
-N-N-N-N-N-N.V 8.8 TABLE III
ooococogb000 COLOR CLASSIFICATION OF PEARLS
coooofoooo i :
cooghooooo Type H 3 L.
co0k000000 White 1 0.4610 0.0668 0.9144
o 0000000 White 2 0.2515 0.0561 0.8861
00000000 Purple 1 0.7145 0.1350 0.6433
Purple 2 0.6694 0.0873 0.8750
Purple 3 0.4954 0.1183 0.8112
Yellow 1
(Gold) 0.4583 0.1367 0.9144
Yellow 2 0.1089 0.2630 0.8579
over a larger range of outgoing directions. Quite commonly, it
is possible to see only a specular reflection of relatively bright
Fig. 2. Classification for object size, shape, color, and blemish. objects like sources. Thus, in some surfaces, one sees a bright

of incoming radiation is absorbed for every direction, the rest
leaving along the specular direction [21].

Relatively few surfaces can be approximated as specular
reflectors. Typically, unless the material is extremely highly
smooth, radiance arriving in one direction leaves in a small
lobe of directions around the specular direction. Larger specular
lobes mean that the specular image is more heavily distorted
and is darker because the incoming radiance must be shared

blob called specularity along the specular directions from light
sources. We may take the most common Phong model [22], as
formulated in (1), to assume that only one point light source is
specularly reflected in the inspection system [Fig. 3(a)]
Iy = Ipskg cos™ 0. (1)

In this model, the radiance leaving a specular surface is
proportional to cos™ 6§ = cos™(0; — 05), as in (1), where 0;
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Fig. 3. Specular exponent and surface shininess. (a) The specularity on
smooth surfaces; (b) index of specular exponents (n = 40, 20, 10, 5), large
number corresponding to finer surface.

is the exit angle, i.e., the angle between the surface normal
and the observation sight of light, ks is the specular reflection
coefficient, 6 is the specular angle, i.e., the angle between the
surface normal and the specular reflection direction, I, is point
light’s source intensity, I is the intensity of the reflection, and
n is a parameter called specular exponent. Large values of n,
which mean surfaces are smooth, lead to a narrow lobe and
small sharp specular spot; small values, which mean surfaces
are rough, lead to a broad lobe, large specular spot with fuzzy
boundaries [Fig. 3(b)].

B. Radiometry in the Vision System

From physics and geometry [23], we may find the image

irradiance to be
d\ 2
Z (2,> cos? a] L 2)

where d is the diameter of the lens, « is the angle between
the sight of light and the surface normal, and 2’ is the dis-
tance between the image plane and camera optical center. The
relationship (2) shows that the object radiance L is related to
the image irradiance F by geometrical factors. We also know
that the irradiance is proportional to the area of the lens and
inversely proportional to the distance between its center and the
image plane.

Considering that in the inspection system, the viewing dis-
tance to surface points varies very slightly, which means the
object radius R is much less than the viewing distance z, i.e.,
R < z, so that z is approximated as an constant for a pearl, we
have L = I and a = ;. Combining (1) and (2) gets (3) or (4)

FE =

7 (d\>
E = 1 (z’) Isks cos’ 0; cos™ (6; — 6,) 3
E =acos® ; cos™ (0; — 05) 4)

where a is a constant. The assessment task is to find the index
n from the specularity formation (4) by image analysis.
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IV. ASSESSMENT METHOD
A. Calibration and Measurement

For accurate measurement of different objects, the system
has to be calibrated to identify some systematic parameters,
e.g., the constants in (3) and (4). Let us first consider the light
interaction on surfaces. When light interacts with an object, it
may be reflected, transmitted, and absorbed. The light reflected
from a typical surface in the real world is a combination of
the three reflections, i.e., ambient reflection, diffuse reflection,
and specular reflection. Ambient reflection is a gross approx-
imation of multiple reflections from indirect light sources. It
produces a constant illumination on all surfaces, regardless
of their orientation, but itself produces very little realism in
images. Diffuse reflection simulates the light that penetrates
a surface and gets reflected by the surface in all directions. It
is the brightest when the normal vector of surface points toward
the light source but it has nothing to do with the position of
the camera. Specular reflection is the direct reflection of light
by a surface. Shiny surfaces reflect almost all incident light
and therefore have bright specular highlights or hot spots. The
location of a highlight moves as you move the camera (view-
dependent), while keeping the light source and the surface at
the stationary position.

In the case of our system setup in Fig. 1, we may assume that
there is no ambient reflection in the ideal scene and the surfaces
are smooth enough that there is very little diffuse reflection.
Therefore, there is only specular reflection considered in closed
box of vision inspection. A complete illumination intensity
model for reflection from a point light source is shown in (1).

If we choose the roughest surface (seen directly or from a
measuring instrument, such as a stylus) and assume n = 1, for a
scene point near the highlight area, we have Iy = I sk, cos 0.
Suppose the locations of the point source and the camera are
fixed in the inspection box. The coefficient ks is determined
by the surface material and it is changeless when we measure
the same kind of objects. From (1), we know that the object
radiance E is proportional to image pixel intensity L.

The calibration is necessary for quantitative assessment. If
only for qualitative classification of the same kind of objects,
we may just take any one to have n = 1 and all others are
found relatively smoother or rougher by the assessment method.
Referring to the image formation and vision geometry, we can
find the relationship between what appears on the image and
where it is located in the 3-D world [6].

Suppose we are going to measure some objects whose spec-
ular exponents are not yet known. Consider (1) where we keep
the same situation as that in the calibration, i.e., source and
camera location, the intensity of the source, and we get

sn

—cos" 10y, n— 8 l8l0) o

I lg(cos by)

Therefore, calculation of specular exponent is transformed
into seeking the pixel intensity (or gray level) of surface points
and corresponding cos 6. Practically, it still appears hard to
carry out and usually produces inevitable error. In our practice,
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we use the highlight’s area defined by selecting a certain gray
level as threshold value instead.

Consider a smooth surface F'(x,y, z) and the normal vector
at the incident scene point M (xo, Yo, 20) is

Ny = [Fy (0,90, 20), Fy (0, Y0, 20), F=(z0, %0, 20)] . (6)

Assume the coordinates of the light source and the camera
are (Xg,Y;, Zs) and (X, Ye, Zc), respectively. By (6), we
get the equations where the relationship of incident light and
reflected light ray lies

X-Xy Y-Yy Z-2
Xs—Xo Ys—Yo Zs—Zo
X-Xy Y-Y, Z-2%

— = . 7
Xe—Xo Yo—Yo  Zo-Z 2

and

The incident angle 6, is determined by

cos s = [fx (z0,y0)(Xs — Xo)
+fy (20, y0)(Ys — Yo) — (Zs — Zo)]
IV Fx(@0,y0)? + fy (w0, y0)? + 1
IV (X = X0)? + (Yo=Y0)?+(Zs—Z0)>. (8)

The exit angle 0; is determined likewise

cost; = [fx(z0,y0)(Xc — Xo)
+fy (w0, y0)(Ye — Yo) — (Ze — Zo)]
NV Fx (@0, 90)% + fy (w0,90)? + 1
V(X = X0)2 + (Yo Yo +(Ze=Z0)2. - 9)

B. Efficient Calculation Model

The method described in the above subsections is still too
complex for practical implementation, particularly required for
real-time efficiency and system productivity. Now we consider
a simplified vision setup and calculation model as illustrated in
Fig. 4.

Following the assumptions in Section III, from Fig. 4(a), the
point light source and vision camera are placed at the same
position far away from the object. Considering a point on the
top area of spherical surface, as R < z, it can be assumed
that the line of sight and the incident light are from the same
direction to the surface point. According to the geometrical
relationship and definitions of viewing and reflecting direc-
tions, we have 0, ~ —6; and 0 ~ 26;. Therefore, (4) can be
rewritten as

E = acos® §; cos™(26;) = a(1 — sin?0;)(1 — 2sin” §;)".
(10)
Let

Y
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Fig. 4. Simplified model for specularity calculation on pearl surface.
(a) Vision setup and geometrical model and (b) relative calculation of mapped
area sizes.
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Fig. 5. Shininess index versus area ratio.

where s is highlighted area size and .S is the whole size in the
great circle, as illustrated in Fig. 4(b). We may further get

E=a(1—7r)%*(1 —2r,)"

g [F/(l — 7“5)2}
"= lg(1 — 2r;) (13)

(12)

where F' = E/a is a constant in (13) which can be determined
during the calibration step (when taking the roughest object to
have n = 1), i.e.,
F=(1-7r4)%1-2rg). (14)
Fig. 5 plots the relationship between area ratio 5 and spher-
ical shininess n according to (13). It tells that n is rapidly
decreasing when 7 is increasing when a rough object is used
as a reference. It also means that a “good” object has a small
(but very bright) area of highlight. Therefore, the determination
of shininess index now becomes easy counting of highlighted
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Fig. 6. Virtual images generated for N = 1,2, 4,8, 10, 20, 30, 50, 80, 100 (from top left to bottom right).

pixels. This replacement is very useful for practical implemen-
tation because it is actually unlikely to determine the intensity
of the central area because of white clipping of the camera.

It should be noted that the paper makes an assumption for the
approximation that the pearls have a spherical shape. However,
the shape may not always be spherical, but may also ellipsoidal,
flat, or irregular as listed in Table II. For different shapes, we
can have the same conclusion that the shininess index is related
with the highlighted area size. The curves are similar with the
one plotted in Fig. 5, but their coefficients are slightly different.
For short ellipsoid, there is no problem to evaluate the objects
using the same indices, but it may cause a certain error for long
ellipsoids and other objects. Fortunately, the pearls are firstly
classified by their shapes. Thus, the highlighting data can still
tell the goodness of pearls well for a same class of pearl shapes.
Furthermore, classification of flat and irregular pearls is actually
unimportant in the industry.

V. EXPERIMENTS AND RESULTS
A. Numerical Simulation

To test the validity of the method for determining the specular
exponent of a spherical object, we firstly carried out some nu-
merical simulation experiments. From computer vision, we can
get the relationship between what appears on the image plane
and where it is located in the 3-D world [5]. In the simulation,
we set some spatial parameters in the world coordinate system.
For example of one setup instance, we trace a light ray emitted
from the light source at (—3, 3, 3), reflected at a surface point
P(0,0.866,1.5), and seen by a fixed camera at (0, 10, 1) which
images the reflected light ray on the image plane. The image
coordinate system is defined with respect to a coordinate system
whose origin is at the intersection of the optical axis and the

image plane (0, 10 + A, 1), where A is the focal length of
the camera. From the projective coordinate transformation in
computer vision [7], we can easily get the position in the image
plane of a scene incident at a point p on the object surface.

In the experiments by means of virtual image generation,
when n = 1 for the roughest object, we can compute every
scene point and generate the virtual image by simulation. It
is assumed that the coordinates of the light source, incident
scene point, and camera are already known. The equation of
the sphere is 2% 4 y? + 22 = 1. From 3-D spatial relationship,
we can get the viewing direction cos(#) = 0.96.

By simulation, we assume that A = 5, the intersection of the
optical axis and the image plane is in the image center. It is
assumed n = 1 and image attributes are with width 18.6 mm
and height 13.1 mm. The actual pixel coordinates (u,v) are
numerically determined. In the experiments, the gray level of
every image point of P is calculated. The pixel size is with
width 0.0322 mm and height 0.0313 mm.

The highlighted area is obtained by pixel summation for
those which have the gray levels distributed beyond the white-
clipping value, which is 255 for common charge-coupled device
cameras. However, considering the contrast compression effect,
which is used in most cameras, we should set a threshold value
on the line of the knee slope. In practice, this paper suggests
to use 0.98 of white-clipping value, i.e., 255 * 0.98 = 250 in
common. A slightly different threshold value does not affect the
relative ranking result, but it causes the curve in Fig. 5 shifting
a little. Therefore, this value should be consistent in the same
task of a ranking application.

Numerically, we change the specular exponents n from 1 to
100 and track the highlight reflection fraction with the given
point light source. Generated virtual images are shown in Fig. 6.
Table IV shows the experimental results of surface shininess
measurement from those virtual images. If it is required to
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TABLE 1V
MEASURED SPECULAR EXPONENTS BY SIMULATION
True index N | Highlight size s | Area ratio | Measured index n
1 15258.71 0.0235 1.000000
2 8805.941 0.013562 2.487082
4 4984.212 0.007676 5.189538
8 2761.937 0.004254 10.2035
10 2289.816 0.003527 12.52256
20 1257.547 0.001937 23.65976
30 873.2671 0.001345 34.53161
50 557.6013 0.000859 54.67304
80 370.2619 0.00057 82.86549
100 302.2788 0.000466 101.7376
120 ; ; , .
: ; - measured index n
: : - e 111 index M
100 F]-eeereeenes ................ ................. ................. e
B[ R B s s ................. I —— .................
c . : 8 :
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= : : :
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Fig. 7. Shininess index versus area ratio as measured in virtual images.

obtain the true shininess index, a calibration process should
be carried out before its actual measurement. In Table IV, the
symbol s represents the highlight area size, which is equivalent
to the highlight intensity for a spherical object. The whole ball
size is 1540 100. The shininess of the first ball is defined to
be 1 and the area ratio r4; is determined according (11). Then,
the constant in (14) is found to be F' = 0.91. From the results,
we can find that the measured index N keeps good consistence
with the given value. Fig. 7 plots the relationship between area
ratio r, and measured index n.

From Table IV, we can find some difference between the
estimated index n and true V. It is mainly caused by the
calculation model illustrated in Fig. 4 where we made several
approximation assumptions for simplified calculation. Never-
theless, this deviation does not affect the relative relationship
between the object shininess and index value. In practice, the
measurement is always relative. That is, an object is compared
with the one whose index is defined as 1.0. Of course, the
deviation can also be corrected by a calibration process which
adjusts the curve in Fig. 5 along the true positions.

B. Experiments With Real Objects

In another experiment, we collect ten pearls with different ap-
pearance quality. The samples are labeled from 1-10 and sorted

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 8, AUGUST 2012

Pearl samples no. 1-10

Fig. 8. Images of ten sample pearls with varying shininess.

by experts in a certain order, from worst to best. It means that
pearl No. 1 is worst and No. 10 is best in the sense of shininess.
The samples are provided by an industrial company. Since there
is no digital criterion available for objective measurement, they
are judged by their industrial professional experience.

The images of the sorted pearls are shown in Fig. 8. The same
procedure as that of numerical simulation is carried out for
pearl assessment and the results are shown in Table V. Without
previous calibration, the shininess of the first pearl is defined
to be 1 and the area ratio ry; is determined according (11).
The constant in (14) is found to be F' = 0.8625. The pearl size
varies somewhat and the equivalent diameters are computed
as in the second column in Table V. The highlighted sizes
and area ratios are listed in the third and fourth columns. The
shininess indices are measured according to (13) and results in
listed in the fifth column. The comparison with human visual
observation is illustrated in Fig. 9.

Currently, there is no quantitative measurement available for
this purpose in the pearl industry. What the experts can tell us
is only “which pearl is good/bad” and “which is better/worse”.
Therefore, we could not give any quantitative comparison, but
find the conclusion that the automatic objective assessment
is consistent with subjective observation. The research contri-
bution of this paper may provide a new way to quantitative
measurement in the industry.
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TABLE V

EXPERIMENTAL RESULTS OF THE PEARL SAMPLES
No. |Ball diameter | Highlight size |[Area ratio |Shininess index
1 416 4890 0.0360 1.0000
2 398 4485 0.0361 0.9959
3 385 4418 0.0380 0.8941
4 380 3738 0.0330 1.1867
5 417 4406 0.0323 1.2350
6 383 3571 0.0310 1.3280
7 400 3433 0.0273 1.6473
8 383 3054 0.0265 1.7297
9 378 2484 0.0221 22789
10 388 2221 0.0188 2.8734

shininess index n

[gu]
E=
o
—_
[

05 .
1 5 ] 7
sample no.

Fig. 9. Shininess indices of ten sample pearls (consistency between subjective
and objective assessments).

In the experiments, since the assessment procedure only
needs to count the number of highlighted pixels in the image
and compute the index by (13), the algorithm is very fast
(it takes no more than 1 ms for each object). Therefore, the
method can well meet high efficient requirement of practical
applications on real-time production lines.

C. Discussion

We may notice that although the subjective assessment has a
good consistency with the objective observation in general, but
is not always identical. From the Fig. 9, we find the shininess
indices of the first three samples are not monotone increasing.
Computer evaluates the shininess index purely according to
the light reflection, but human may consider more factors
according to individual experience. Particularly when the pearls
have very similar shininess, it is actually very difficult to tell
their difference. Inconsistency may happen in this case, but not
always caused by the computer. In fact, it does not require to
classify the pearls in such a detailed groups. For example, the
industry often uses only three classes, i.e., Class I, II, and III.
Therefore, instead of ten, if the pearls are classified into three
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groups, then the result is perfect because the first three samples
are going to one class.

On the other hand, in the theory, we have assumed that
only one point source is used for lighting the object, but in
the practical design, a number of objects are located along
each other to improve the productivity. To reduce the reflection
effects among them, the light source and the camera are placed
on the top of a black box. The light is thus reflected to the
top and sides of the box. The black material inside the box
can absorb the reflected light from all pearls. The pearls are
placed with a certain distance each other to reduce the effect
of their reflection. In addition, during image processing for
identification of highlighted area, only the top area is computed
to avoid noises of the surrounding. However, this design still
cannot completely avoid disturbance from each other. A perfect
setup is to inspect one pearl in each examination. This can
make the result more accurate but decrease the productivity
(to about only 1% of that in the current design). It depends
on the interest in the industry. Mostly, it does not need to
evaluate very accurately only for classification purpose. The
industrial companies only need to separate them into three or
four classes. Of course, in some other applications, instead of
pearl classification, accurate assessment may still be necessary.

VI. CONCLUSION

This paper described a novel method to calculate the specular
exponent of a surface for assessment of its appearance quality
by means of artificial vision. It computes the white-clipped
highlight of illumination of a point source and image intensity
to observe local surface properties. Since the procedure is
mostly to count the number of highlighted pixels in an image,
which takes no more than 1 ms for each object, it can produces
in very high efficiency in practical applications. Both digital
simulation and practical experiments were carried out to test
the correctness of the method. The results appear reasonable.
The numerical measurement is found correlation with intuitive
observation of the appearance. Comparison of subjective and
objective matches well. The results obtained so far are promis-
ing and provide a basis for the development of a new approach
to shininess assessment and automatic inspection systems for
classification of pearllike smooth objects.
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