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Abstract: Hyperspectral remote sensing is an effective tool to discriminate plant species, providing
vast potential to trace plant invasions for ecological assessments. However, necessary baseline
information for the use of remote sensing data is missing for many high-impact invaders. Furthermore,
the identification of the suitable classification algorithms and spectral regions for successfully
classifying species remains an open field of research. Here, we tested the separability of the
invasive tree Acacia longifolia from adjacent exotic and native vegetation in a Natura 2000 protected
Mediterranean dune ecosystem. We used continuous visible, near-infrared and short wave infrared
(VNIR-SWIR) data as well as vegetation indices at the leaf and canopy level for classification,
comparing five different classification algorithms. We were able to successfully distinguish
A. longifolia from surrounding vegetation based on vegetation indices. At the leaf level, radial-basis
function kernel Support Vector Machine (SVM) and Random Forest (RF) achieved both a high
Sensitivity (SVM: 0.83, RF: 0.78) and a high Positive Predicted Value (PPV) (0.86, 0.83). At the canopy
level, RF was the classifier with an optimal balance of Sensitivity (0.75) and PPV (0.75). The most
relevant vegetation indices were linked to the biochemical parameters chlorophyll, water, nitrogen,
and cellulose as well as vegetation cover, which is in line with biochemical and ecophysiological
properties reported for A. longifolia. Our results highlight the potential to use remote sensing as a tool
for an early detection of A. longifolia in Mediterranean coastal ecosystems.

Keywords: classification accuracy; dimension reduction; ecophysiological traits; field spectroscopy;
invasive species; Natura 2000; non-linear classifiers; Support Vector Machine; Random Forest;
vegetation index

1. Introduction

Invasive plant species are a major threat to many ecosystems worldwide [1], causing high
ecological impacts and high economic costs [2]. Thus, early detection and monitoring of distribution
and abundance of invasive species is desirable as a basis for impact assessment, prioritization of most
harmful species, and targeting of invasive populations. As on-site data collection is difficult over large
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areas, remote sensing provides a promising tool to detect and to monitor invasive species at landscape
scales [3–5]. To this end, it would be beneficial to identify band regions that separate invasive and
native species by means of field spectra, and to assess their importance at different scales. However,
few studies have compared the separability of plant species based on hyperspectral data on both,
leaf and canopy level [6–11], while studies on invasive plants exclusively used either leaf [12,13] or
canopy [14,15] field spectral data.

Further, there are several approaches to classify species using either the continuous spectrum from
the visible (VIS) to the shortwave infrared (SWIR) [10,16,17], particular spectral curve shape-based
features [8,18], or vegetation indices [8,19,20]. Linking spectral with biochemical and physiological
ancillary data may increase classification accuracy. At the same time, it allows to relate the spectral
separability of species to their characteristic ecophysiological traits [19,21]. In this regard, vegetation
indices and spectral features can be considered semi-quantitative biochemical parameters of the
reflectance spectrum [22] that may help to assess the physiological status of the vegetation [20]. In a
recent study on the separability of native Mediterranean dune species, relevant absorption features
were related to pigments, water, lignin and cellulose [23]. However, important wavelengths or bands
to distinguish exotic from native species in a Mediterranean dune ecosystem still have to be identified.

Important predictors can be extracted by using wrapper functions such as recursive feature
elimination and by choosing classifiers with embedded feature selection methods [16,19,24,25].
Powerful classifiers for high-dimensional data include Partial Least Squares Discriminant Analysis
(PLSDA) [26] and sparse PLSDA [16], Support Vector Machines (SVM) [16,27], Linear Discriminant
Analysis (LDA) [7,19] and Random Forest (RF) [8,19]. The relatively new High-Dimensional
Discriminant analysis (HDDA) has been tested on simulated and real high-dimensional datasets [28],
but not on vegetation data compared with common algorithms such as SVM and RF. However, previous
studies show no agreement on the best classifier, the best data reduction technique, and the most
important bands for species discrimination. Therefore, in the present study, we compared results from
different types of classification algorithms (LDA, HDDA, sPLSDA, RF, SVM) and different methods
for reducing data dimensionality.

A comprehensive spectral library for a diverse Mediterranean dune ecosystem has been published
recently [23], though it does not include exotic invasive species. Some highly invasive shrub and tree
species worldwide belong to the genus Acacia [29]. In European Mediterranean dune ecosystems,
Acacia longifolia (Andrews) Willd. has been described as one of most problematic invaders. Its
occurrence has been reported for most part of the western Atlantic coast of the Iberian Peninsula [30–36]
and in coastal ecosystems worldwide [37–40]. Several studies have assessed its invasion strategy and
impact in Mediterranean dune ecosystems in Portugal. It is considered a highly competitive plant
as it has a high growth rate [41,42], an efficient nutrient acquisition [41,42], and it benefits from fire
events [43]. The impacts on ecosystem functioning include alterations of the nitrogen cycle [30,44],
water balance [45], carbon assimilation [45], vegetation and plant community structure [33], plant
diversity [33], litter density [31], soil N content and C/N ratio [31], and the seed bank [46]. In spite of
the numerous studies on its strategy, its impacts, as well as restoration and control, there is a lack of
assessments of its invasion pattern at landscape level, i.e., by means of remote sensing. Furthermore,
to our knowledge, assessing leaf and canopy spectral properties of invasive Acacia spp. as baseline
information for detection at an early invasion state has not yet been achieved.

In this study, we tested the separability of A. longifolia from other exotic and native shrubs and trees
in a Mediterranean dune ecosystem. In particular, we investigated: (i) if narrowband hyperspectral
vegetation indices perform better than the full spectrum in distinguishing A. longifolia at leaf and
canopy level from all other species; (ii) which type of classification algorithm provide the best classifier
for A. longifolia; and (iii) which are the most important biophysical, biochemical, and ecophysiological
parameters to distinguish A. longifolia from adjacent vegetation.
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2. Materials and Methods

2.1. Study Area

The study was conducted at 7 sites along a coastal strip of 1 km ˆ 35 km in the Natura 2000
site “Comporta/Galé” [47] in Southwest Portugal (see Figure 1). The study area is characterized by
a mosaic of several natural and semi-natural shrub-dominated dune habitats comprising “Atlantic
decalcified fixed dunes” (2150*), “coastal dunes with Juniperus spp.” (2250*), “dune sclerophyllous
scrubs” (2260) as well as “wooded dunes with Pinus pinea and/or Pinus pinaster (2270*)”, including
priority habitat types based on the Natura 2000 directive (indicated with “*”) [48]. For a further
description of the Natura 2000 site and the nature reserve in particular see [47,49], respectively.
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of measured target reflectance as the effect has been shown to be minimal for calibrated devices when 

Figure 1. Study area and study sites in the stabilized coastal dunes of the Natura 2000 site
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One of the management objectives for the aforementioned habitat types is the early detection and
control of high-impact invasive species of the genus Acacia [47] such as A. longifolia [30,33,44,45].
The population structure of A. longifolia in the study area includes isolated adult trees without
juvenile plants, locally regenerating populations, populations regenerating after disturbance and
stable, impenetrable thickets. However, to date, comprehensive abundance and distribution data are
not available.

2.2. Collection of Field Spectra

Leaf and canopy spectra were collected between 5 and 9 April 2011 and between 27 April and
12 May 2014. In 2011 we sampled spectra with an ASD FieldSpec 3 (see [50,51] for specifications). In
2014, we collected spectral data with an ASD FieldSpec 4 Hi-Res spectroradiometer (ASD Inc., Boulder,
CO, USA) [52]. Spectral information was recorded from fresh samples in the field to avoid changes in
spectral properties during storage and transportation [53]. Leaf spectra were recorded using a plant
probe (ASD Inc., Boulder, CO, USA). Several leaves were used in case single leaf area was too small
to cover the area of the contact probe. The plant probe’s white reference disk was used as in [50]. In
2014, we additionally used black, foamed rubber as dark background (see [26]). The canopy spectra
were taken with a field of view of 25˝ [52]. Canopy spectra were sampled during days without cloud
cover and with homogenous light conditions within a period of ca. 2 h before and after solar noon.
The spectra were referenced against a calibrated Zenith LiteTM Diffuse Reflectance Target—95% R
(SphereOptics®, Herrsching, Germany). Spectra average was set to 25 for plant targets and 50 for
the white reference. Spectral collection rate was ten¨ s´1 for the ASD FieldSpec 3 and five¨ s´1 for the
FieldSpec 4. Although two different spectrometers were used, we do not expect a significant difference
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of measured target reflectance as the effect has been shown to be minimal for calibrated devices when
the same protocol is applied [54]. Here, both first-hand spectrometers were recently calibrated, and the
sampling protocol as well as the operators and the white reference material were identical.

The measured target species were the most abundant shrub and tree species of the habitat
types such as Corema album (L.) D. Don, Juniperus phoenicea subsp. turbinata (Guss.) Nyman and
Pistacia lentiscus L., as well as exotic invasive species such as A. longifolia and Acacia saligna (Labill.)
H.L. Wendl. Corema album is possibly the most frequent small shrub in the open dunes. Pistacia lentiscus
is also very frequent, and it is the most similar species to A. longifolia regarding growth form, leaf
type and habitat. Juniperus phoenicea has a different leaf type compared to A. longifolia, but growth
form and habitat are similar. We also sampled chamaephytes including the invasive Carpobrotus edulis
(L.) N.E.Br. and those of high-conservation value (e.g., Thymus sp.). Apart from different growth
forms, leaf types and strategies, species such as C. album and A. longifolia confer a high degree of
plasticity in response to microhabitat differences in environmental stress, such as fine scale differences
in water accessibility in this heterogeneous system [55] which can affect the plant species’ spectral
response [56,57]. Altogether, we used 607 leaf spectra (74 A. longifolia and 524 other plant species) and
293 canopy spectra (18 A. longifolia and 275 other plant species). As the main objective of this study
was to discriminate the target species A. longifolia from any other species or combinations thereof, the
samples were separated into two groups, “Acacia longifolia” and “other plant species”, be classified in a
“one-versus-all” (OVA) approach. Although some studies showed constraints using a binary classifier
for a potentially multiclass problem (e.g., [58]), the OVA approach has been applied successfully in
various studies [59] including classification of remote sensing data using SVM [60,61], and for invasive
plant species detection [62]. A full species list including growth form and the number of leaf and
canopy samples can be found in Table 1.

Table 1. Overview of the sampled species including number of sampled leaf spectra, number
of sampled canopy spectra, growth form (Chamaephyte (C), Geophyte (G), Phanerophyte (P),
Protohemicryptophyte (Ph)), family based on [35] and status (Annex II species of the EU habitat
directive, endemic, invasive) based on [63].

Species Leaf Canopy Growth Form Family Status

Acacia longifolia 74 18 P Fabaceae inv
Acacia saligna 24 16 P Fabaceae inv

Armeria pungens 5 7 C Plumbaginaceae
Arundo donax 8 n.a. Ph Poaceae inv

Calluna vulgaris 8 1 P, C Ericaceae
Carpobrotus edulis 11 22 C Aizoaceae inv

Cistus ladanifer n.a. 5 P Cistaceae
Cistus salviifolius 12 16 P, C Cistaceae

Corema album 120 23 P Ericaceae
Daphne gnidium 3 1 C, P Thymelaeaceae

Halimium calycinum 21 16 P Cistaceae
Halimium halimifolium 49 14 C, P Cistaceae

Helichrysum italicum subsp.
picardii 13 16 C Asteraceae

Juniperus navicularis 10 10 P, C Cupressaceae end
Juniperus phoenicea subsps.

turbinata 34 23 P, C Cupressaceae

Lavandula stoechas 20 14 P, C Lamiaceae
Pancratium maritimum 9 n.a. G Amaryllidaceae

Paraserianthes lophantha 16 n.a. P Fabaceae inv
Phillyrea angustifolia 3 3 P Oleaceae

Pinus pinaster 42 17 P Pinaceae
Pistacia lentiscus 43 24 P Anacardiaceae

Rosmarinus officinalis 29 24 C, P Lamiaceae
Santolina impressa 30 19 C Asteraceae end, AnnII
Sedum sediforme 1 1 C Crassulaceae

Stauracanthus sp. n.a. 20 P Fabaceae
Thymus camphoratus 7 8 C Lamiaceae end, AnnII

Thymus carnosus 15 19 C Lamiaceae end, AnnII
Ulex australis n.a. 9 P, C Fabaceae end

2.3. Pre-Processing of Field Spectra

The spectra were corrected for the spectral discontinuities between the three sensors of the
spectroradiometer using an additive correction as in [64] with the SWIR1 sensor as reference. The
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data were smoothed with the Savitzky–Golay filter using a window size of fifteen and a second
order polynomial using the “hsdar” package version 0.3.1 [65] of R statistical software [66]. For the
canopy spectra analysis, noisy bands with water absorption features (1350–1460 nm and 1790–1960 nm)
were removed.

2.4. Calculation of Vegetation Indices and Red Edge Parameters

Hyperspectral narrowband vegetation indices and red edge parameters were calculated using the
“hsdar” package, version 0.3.1 [65]. Variables with missing or infinite values or near zero variance were
removed and indices for soil parameters (SWIR.FI, SWIR.SI, and SWIR.LI) were excluded. Pairwise
correlations were calculated for the vegetation indices using Spearman rank correlation, and highly
correlated predictors with a correlation coefficient higher than 0.6 were removed from the dataset, thus
setting a slightly more conservative threshold than recommended [67].

2.5. Classification

Two approaches were compared to classify the spectral data: (1) the full spectrum together
with classifiers specifically developed for high-dimensional data analysis; and (2) a reduced dataset
consisting of vegetation indices. The number of vegetation indices was further reduced using recursive
feature elimination (RFE) based on the receiver-operator curve (ROC) and considering variable
importance [68].

To analyze the full spectrum, we chose sparse Partial Least Square Discriminant Analysis
(sPLSDA) [69] and High-Dimensional Discriminant Analysis (HDDA) [28]. HDDA is a relatively
new classifier [28,70] designed for high dimensional datasets. The vegetation index datasets were
classified using sPLSDA and HDDA as well as Linear Discriminant Analysis (LDA) [71], Random
Forest (RF) [72], and Support Vector Machine (SVM) [73]. LDA was chosen as it is a simple, fast
and efficient classifier [9,74]. RF and SVM were included because they have been proven useful in
classifying various kinds of datasets [75] and are among the most commonly used classifiers designed
for hyperspectral data analysis [76].

We optimized the model parameters, i.e., the number of components, eta and kappa in sPLSDA,
“mtry” in RF as well as sigma and the cost parameter for SVM with a radial basis function kernel. The
predictors were centered and scaled to account for the different ranges of the vegetation indices and
the red-edge parameters. During model training and recursive feature elimination, the models were
validated using stratified tenfold cross validation with five repeats. We used the receiver operating
characteristic (ROC) curve to maximize model performance and balance Sensitivity and Specificity.
The specific packages for each classifier were as followed: sPLSDA (“spls”, version 2.2-1) [77], HDDA
(“HDClassif”, version 1.3) [70], LDA (“MASS”, version 7.3-44) [71], RF (“randomForest”, version
4.6-12) [78], and SVM (“kernlab”, version 0.9-22) [79].

Each dataset was split into a training set (75%) for model fitting and a test set (25%) for model
evaluation preserving class distribution. “A. longifolia” was up-sampled during training (Table 2) to
avoid a high impact of the majority class on the classifier which could lead to poor identification of the
minority class [68]. The test set was not up-sampled in order to produce a reliable evaluation of the
training model.

Model performance can be negatively influenced by both between-class and within-class imbalances.
As a result, minority classes or small data subclusters of one class might be misclassified [80].
Therefore, data splitting and model fitting was iterated a hundred times to address the within-class
distribution. Model performance was assessed by boxplots of Sensitivity, Specificity, ROC area under
curve (AUC) (R package “pROC”, version 1.8) [81] and Positive Predictive Value (PPV). Furthermore,
we calculated the variable importance (VIP) and the frequency of occurrence for the predictors within
each of the 100 iterations. A Mann–Whitney U-Test was performed to test for significant differences of
important vegetation indices between the target species A. longifolia and the other species.
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Table 2. Overview of the number of spectral samples for Acacia longifolia and other species used for
training and testing at leaf and canopy level. Training samples of the minority class A. longifolia were
up-sampled during resampling to match the majority class size and account for class imbalance.

Class
Leaf Canopy

Training Test Training Test

Acacia longifolia 56 18 14 4
Other plant species 400 133 246 82

All analyses were conducted using the R package “caret”, version 6.0-52 [82] which supports a
large variety of classification algorithms.

3. Results

3.1. Separating Acacia longifolia from Adjacent Mediterranean Dune Vegetation at the Leaf and Canopy Level

After removing correlated variables, sixteen vegetation indices were used for the classification at
the leaf scale and twelve at the canopy scale (Table 3). Regarding the classification accuracy at leaf
level, the median of Area Under Curve (AUC) was between 0.91 (HDDAFullSpec) and 0.98 (RFVegInds,
SVMVegInds). At the canopy scale, all classifiers apart from HDDAFullSpec reached a median AUC of
0.98 or 0.99 (Figure 2). Therefore, A. longifolia could be successfully identified at both leaf and canopy
level. However, performance parameters directly related to the identification of A. longifolia, PPV
(0.4–0.86) and Sensitivity (0.67–1), varied stronger than AUC (0.84–0.99) and Specificity (0.89–0.99).
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Figure 2. Model performances (Area Under Curve (AUC), Sensitivity, Specificity, Positive Predictive
Value (PPV)) after 100 iterations of distinguishing Acacia longifolia from adjacent Mediterranean
dune vegetation for full spectrum data (*.FullSpec) and vegetation indices (*.VegInds) at leaf (top)
and canopy (bottom) level applying sparse Partial Least Square Discriminant Analysis (sPLSDA),
High-Dimensional Discriminant Analysis (HDDA), Linear Discriminant Analysis (LDA), radial basis
function kernel Support Vector Machine (SVM), and Random Forest (RF) as classifiers.
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Table 3. Hyperspectral narrowband vegetation indices including related vegetation characteristics, the sensor level at which the index was applied (Leaf and Canopy)
and spectral bands used for calculation. Significant differences (p < 0.05, U-Test) in median index values between Acacia longifolia and adjacent dune vegetation are
marked with an “*” for leaf and canopy scale, respectively.

Vegetation Index Related to Sensor Level Formula References

CAI Cellulose Absorption Index Cellulose L *, C * 0.5 pR2000 ` R2200q´ R2100 [83]
DPI Double Peak Index Stress L *, C * pD688 ˆD710q {D2

697 [84]
DWSI2 Disease-Water Stress Index 2 Disease-Water Stress L *, C R1660{R550 [85]

EVI Enhanced Vegetation Index Biomass/LAI L *, C 2.5ppR800 ´ R670q { pR800 ´p6ˆ R670q´ p7.5ˆ R475q` 1q [86]
LWVI1 Leaf Water Vegetation Index 1 Water L *, C * pR1094 ´ R983q { pR1094 ` R983q [87]

SWIR.VI Shortwave-Infrared Vegetation Index Vegetation Cover L *, C * 37.72 pR2210 ´ R2090q` 26.27 pR2280 ´ R2090q` 0.57 [88]
TCARI2 Transformed Chlorophyll Absorption Ratio Index, bands used as in [89] Chlorophyll L *, C * 3ppR750 ´ R705q´ 0.2 pR750 ´ R550q pR750{R705q [89]

Datt7 n.a. Water C * pR860 ´ R2218q { pR860 ´ R1928q [90]
DWSI3 Disease-Water Stress Index 3 Disease-Water Stress C R1660{R680 [85]
EGFR Edge-Green First Derivative Ratio Chlorophyll, Nitrogen C * max pD650:750q {maxpD500:550q [91]

I0 wavelength of the min. reflectance of the red-edge Biomass C [92]
SR7 Fluorescence Ratio Blue/Red Fluorescence, Stress C R440{R690 [93]

Datt4 n.a. Pigments L * R672{ pR550 ˆ R708q [94]
Datt8 n.a. Water L * pR860 ´ R2218q { pR860 ´ R1928q [90]
DDn new Double Difference Index Chlorophyll L * 2ˆpR710 ´ R660 ´ R760q [95]
mSR modified Simple Ratio Chlorophyll L * pR800 ´ R445q { pR680 ´ R445q [96]

NDLI Normalized Difference Lignin Index Lignin L * plog p1{R1754q´ log p1{R1680qq {plog p1{R1754q`

plog p1{R1680qq
[97]

NDNI Normalized Difference Nitrogen Index Nitrogen L * plog p1{R1510q´ log p1{R1680qq {plog p1{R1510q`

plog p1{R1680qq
[97]

PRI.CI2 Photochemical Reflection Index x Chlorophyll Content Carotenoid L * pR531 ´ R570q { pR531 ` R570qˆ pR760{R700 ´ 1q [98]
PSRI Plant Senescing Reflectance Index Leaf Senescence L * pR678 ´ R500q {R750 [99]
SRPI Simple Ratio Pigment Index Pigments L * R430{R680 [100]
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3.2. Comparison of Model Performance Using Full Spectrum Data and Hyperspectral Narrowband
Vegetation Indices

Models based on the full spectrum reached a similar accuracy regarding AUC (leaf: 0.97/canopy: 0.99),
Sensitivity (0.94/1.00), and Specificity (0.94/1.00) compared to the highest median values using
vegetation index data: AUC (0.98/0.99), Sensitivity (0.94/1.00) and Specificity (0.98/0.99) (Figure 2).
Nevertheless, models based on vegetation indices revealed at least one classifier that reached or
outperformed those based on the full spectrum with respect to AUC, Specificity, and PPV. In particular,
the median values for PPV were lower for full spectrum data (0.60/0.40) compared with the best
classifiers using vegetation indices (0.86/0.75). Thus, generally, accuracy was as high or even higher
for the classifiers using the reduced dataset, especially regarding PPV.

3.3. Identification of the Optimal Algorithm to Distinguish Acacia longifolia from Adjacent Vegetation

An optimal algorithm can be characterized by a high true positive rate (Sensitivity) and a high
reliability (PPV). At the leaf level, sPLSDAFullSpec and sPLSDAVegInds reached the highest median (0.94)
with a relatively small interquartile range (0.06 and 0.11, respectively) regarding Sensitivity (Figure 2).
HDDAFullSpec also produced relatively high Sensitivity values (0.89) and a small interquartile range
compared to sPLSDAFullSpec, though a low PPV (0.52) indicated a high false positive rate. SVMVegInds
and RFVegInds reached a moderate Sensitivity of 0.83 and 0.78 with a high PPV value of 0.86 and
0.83, respectively. In summary, sPLSDAFullSpec,VegInds performed best concerning Sensitivity, but
overestimated the number of identified A. longifolia individuals. SVMVegInds and RFVegInds provided
alternatives in terms of a balanced relation between Sensitivity and PPV.

At the canopy level, the values for Sensitivity had a low resolution and alternated between 0.75
and 1 due to the sample size. The best results regarding Sensitivity were achieved by sPLSDAFullSpec,
sPLSDAVegInds and HDDAVegInds. The latter reached higher AUC and Specificity, and therefore a
higher PPV, but the PPV was relatively low compared to all other classifiers using index data. Thus,
despite the high Sensitivity, the amount of identified individuals of the target species, A. longifolia, was
overestimated. On the contrary, LDAVegInds, SVMVegInds and RFVegInds had moderate Sensitivity, but a
higher PPV. RFVegInds had the highest PPV of all classifiers, though it showed some extreme outliers.

3.4. Identification of the Most Important Variables

Figure 3 shows mean spectra of the target species, A. longifolia, and three native species as well as
variable importance (VIP) of classification using the full spectrum (sPLSDAFullSpec) at leaf and canopy
level, while the variable importance of vegetation indices for two selected classifiers (sPLSDAVegInds,
RFVegInds) is displayed in Figure 4. The mean spectra of A. longifolia and the three selected small and
tall shrub species, C. album, P. lentiscus and J. phoenicea, differed. However, the standard deviations
indicated overlap among the species.

The number of variables that were important to distinguish A. longifolia from adjacent vegetation
varied depending on sampling method and model (Figures 3 and 4). RFVegInds and sPLSDAVegInds
used between 4–12 and 2–12 variables, respectively. The VIP and variable frequencies of the predictors
differed between sPLSDAVegInds and RFVegInds (Figure 4). For example, in sPLSDAVegInds at canopy
level five predictors (TCARI2, EGFR, Datt7, DPI, l0) occurred in more than 75% of the models, and
five predictors (TCARI2, EGFR, Datt7, DPI, LWVI1) had a VIP higher than 0.5. RFVegInds had more
predictors with a frequency higher than 0.75 (TCARI2, EGFR, Datt7, DPI, LWVI1, SWIR.VI, CAI,
DWSI3, l0), but it had only two predictors (TCARI2, EGFR), which had a median VIP of higher than
0.5 (Figure 4). The classifiers showed a similar ranking of the VIPs, but absolute values and selection
frequencies differed.
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Figure 3. Field spectra and medians of Variable Importance (VIP) (100 iterations) of classification
models of Acacia longifolia: (A) mean leaf spectra of A. longifolia and co-occurring native species;
(B) VIP of sparse Partial Least Squares Discriminant Analysis (sPLSDA) using the full spectrum at
leaf level; (C) mean canopy spectra of A. longifolia and co-occurring native species; and (D) VIP of
sparse Partial Least Squares Discriminant Analysis (sPLSDA) using the full spectrum at canopy level.
VIP values > 0.8 (dashed lines) indicate highly important predictors.



Remote Sens. 2016, 8, 334 10 of 18
Remote Sens. 2016, 8, x 10 of 18 

 

 
Figure 4. Distribution of Variable Importance (VIP) values of vegetation indices from 100 iterations 
of classification models of Acacia longifolia using field spectra of leaves and canopies. VIP values 
higher than 0.8 (dashed lines) indicate highly important predictors. For explanations of vegetation 
indices, see Table 3. Numbers above boxes show the frequency with which the respective index was 
selected in the final model (max = 100). Boxplots: show medians, interquartile ranges and extreme 
values within 1.5 × interquartile range. 

The vegetation indices used as predictors in the classification models both at the leaf and 
canopy scale were related to a range of biochemical and ecophysiological parameters such as leaf 
water (LWVI1) and water stress (DWSI2), biomass/LAI (EVI) and vegetation cover (SWIR.VI), 
cellulose (CAI), and greenness/chlorophyll (TCARI2, DPI). Vegetation indices that were only 
relevant at the leaf level were mainly related to chlorophyll and pigments. Vegetation indices that 
were important at the canopy level with significant differences between A. longifolia and the other 
species were related to greenness (TCARI2, DPI), cellulose (CAI), vegetation cover (SWIR.VI), leaf 
water content (LWVI1, Datt7) and water or nitrogen stress (EGFR) (Figure A1). 

4. Discussion 

4.1. Distinguishing Acacia longifolia from Adjacent Vegetation at the Leaf and Canopy Level 

Identifying a high-impact invasive species at an early stage of invasion is an important task in 
conservation ecology. Hyperspectral remote sensing enables invasive species monitoring and 
predicting invasions at landscape scale. In the present study, we were able to successfully 
distinguish the Australian tree A. longifolia, an invader with high impact on ecosystem services and 
functioning in Mediterranean ecosystems [30–33,44,45,101], at leaf and at canopy level using field 
spectral data. At the leaf level, the non-linear classifiers SVM and RF achieved the best results in 
terms of Sensitivity and Positive Predicted Value using a reduced dataset based on vegetation 
indices. Similar to the leaf level, selecting vegetation indices for species separation based on canopy 
spectra resulted in higher PPV than using the full spectrum dataset. However, RFVegInds also 
produced a few extreme outliers possibly due to misclassifications in the highest nodes [19]. Even 
though RFVegInds did underestimate the number of A. longifolia individuals due to its lower 
Sensitivity, it revealed the highest reliability as indicated by the highest PPV. As adjacent bands are 
highly correlated, removing unnecessary bands while maintaining the predictive power of a 
hyperspectral dataset is an important processing step [102]. The classification accuracy can be 
increased if only band regions are retained that are linked to important biochemical parameters. For 

Figure 4. Distribution of Variable Importance (VIP) values of vegetation indices from 100 iterations of
classification models of Acacia longifolia using field spectra of leaves and canopies. VIP values higher
than 0.8 (dashed lines) indicate highly important predictors. For explanations of vegetation indices, see
Table 3. Numbers above boxes show the frequency with which the respective index was selected in
the final model (max = 100). Boxplots: show medians, interquartile ranges and extreme values within
1.5 ˆ interquartile range.

The vegetation indices used as predictors in the classification models both at the leaf and canopy
scale were related to a range of biochemical and ecophysiological parameters such as leaf water
(LWVI1) and water stress (DWSI2), biomass/LAI (EVI) and vegetation cover (SWIR.VI), cellulose
(CAI), and greenness/chlorophyll (TCARI2, DPI). Vegetation indices that were only relevant at the
leaf level were mainly related to chlorophyll and pigments. Vegetation indices that were important at
the canopy level with significant differences between A. longifolia and the other species were related
to greenness (TCARI2, DPI), cellulose (CAI), vegetation cover (SWIR.VI), leaf water content (LWVI1,
Datt7) and water or nitrogen stress (EGFR) (Figure A1).

4. Discussion

4.1. Distinguishing Acacia longifolia from Adjacent Vegetation at the Leaf and Canopy Level

Identifying a high-impact invasive species at an early stage of invasion is an important task
in conservation ecology. Hyperspectral remote sensing enables invasive species monitoring and
predicting invasions at landscape scale. In the present study, we were able to successfully distinguish
the Australian tree A. longifolia, an invader with high impact on ecosystem services and functioning in
Mediterranean ecosystems [30–33,44,45,101], at leaf and at canopy level using field spectral data. At
the leaf level, the non-linear classifiers SVM and RF achieved the best results in terms of Sensitivity and
Positive Predicted Value using a reduced dataset based on vegetation indices. Similar to the leaf level,
selecting vegetation indices for species separation based on canopy spectra resulted in higher PPV than
using the full spectrum dataset. However, RFVegInds also produced a few extreme outliers possibly due
to misclassifications in the highest nodes [19]. Even though RFVegInds did underestimate the number
of A. longifolia individuals due to its lower Sensitivity, it revealed the highest reliability as indicated
by the highest PPV. As adjacent bands are highly correlated, removing unnecessary bands while
maintaining the predictive power of a hyperspectral dataset is an important processing step [102]. The
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classification accuracy can be increased if only band regions are retained that are linked to important
biochemical parameters. For example, it has been shown that at leaf level, using bands related to leaf
tannin content were also suitable to distinguish A. longifolia from native and other Acacia species [51].
Moreover, a higher number of bands as predictors requires more observations to achieve the same
classification accuracy (“Hughes phenomenon”, e.g., [103]). RF and SVM can achieve higher accuracies
when redundant predictors are removed from a high-dimensional dataset [104,105]. In addition,
radial basis-function kernel SVMs and RF are less sensitive to the Hughes effect than traditional
discriminant classifiers such as LDA [102,106]. While LDA, for example, requires regularization to
reach high accuracies [107], SVMs and RF are state-of-the-art classifiers for hyperspectral data when
their parameters are optimized properly [106,107]. Therefore, at both scales, applying vegetation
indices using a non-linear classifier that can deal with high-dimensional data provides an efficient
method to extract meaningful information and to achieve an optimized and balanced ratio of Sensitivity
and PPV.

4.2. Identifying the Optimal Classifier

The definition of the best classifier in a comparative approach depends on the selected accuracy
measure. For invasive species detection and management, a compromise between Sensitivity and PPV
has to be made (e.g., [108]). In our case, at the canopy scale, for example, the highest Sensitivity and,
thus, the highest detection rate of A. longifolia was reached by sPLSDAFullSpec,VegInds and HDDAVegInds,
but at the expense of a relatively high amount of false positives. Hence, in cases where the reliability
of results is an important selection criterion and false detection is not acceptable, RFVegInds would
deliver the best classification accuracy. This may be the case, e.g., for reporting cover values of
invasive species in monitoring networks, where reliable distribution data are required to decide on
management priorities and strategies. In contrast, other approaches such as screening studies of early
warning systems aiming at detection of early stages of invasion require the identification of every
single invasive individual. In this case, false detection may be acceptable and HDDAVegInds would
provide the better alternative. Therefore, the choice of classifier and accuracy measure depends on the
management objective.

The performance of SVM (leaf scale) and RF (both scales) agrees well with recent studies of plant
species discrimination [16,19] including a recent meta-study comparing a large set of classification
algorithms [75]. However, accuracy can also depend on the species combination rather than the
algorithm [108], and classifier performance can vary between functional groups [23]. There are clear
differences between classifiers regarding accuracy while using the same species combination. Therefore,
for diverse ecosystems such as Mediterranean-type systems covering species with different leaf types
presented here and elsewhere [23], an extensive spectral library is required to find the best possible
model for a reliable classification result.

4.3. Interpretation of the Relevant Vegetation Indices for Identifying Acacia longifolia at the Canopy Level

The spectral information at the canopy level is most relevant for further comparison with
airborne or satellite remote sensing data. Several species-specific characteristics such as leaf chemistry,
canopy structure as well as litter and soil parameters are combined in the canopy spectrum
(e.g., [6,23]). Here, vegetation indices related to chlorophyll, cellulose, water, vegetation cover,
and nitrogen stress differed significantly between A. longifolia and other species, and provided
important predictors to distinguish the invader. These indices were the Transformed Chlorophyll
Absorption Ratio Index (TCARI2), the Cellulose Absorption Index (CAI), the Double Peak Index
(DPI), the Leaf Water Vegetation Index (LWVI1), water content (Datt7), the Shortwave-Infrared
Vegetation Index (SWIR.VI) and Edge-Green First Derivative Ratio (EGRF). This agrees partly with
Oldeland et al. [109] who mapped Acacia encroachment (Acacia mellifera (Vahl) Benth., Acacia reficiens
Wawra and Acacia hebeclada DC.) in a semi-arid ecosystem based on hyperspectral HyMap imagery
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using vegetation indices related to chlorophyll (CARI), greenness (DGVI), water (LWVI1), lignin
(NDLI), nitrogen (NDNI), and cellulose (CAI).

In both studies, indices related to chlorophyll, leaf water and cellulose were important to
distinguish Acacia. However, additional indices related to water (Datt7, EGFR), nitrogen limitation
(EGFR), physiology (DPI) and vegetation cover (SWIR.VI) turned out to be important in our study,
whereas Oldeland et al. [109] chose indices in the SWIR region related to lignin and nitrogen content
(NDNI, NDLI), and parameters related to the red edge region were absent. Thus, a similar though
slightly different set of indices enabled the successful identification of several Acacia species.

Groundwater availability and adaptation to drought are possibly important factors that influence
spectral shapes and affect spectral separability of species in this ecosystem [23]. The fact that the
majority of important indices was related to physiology and water content could be due to the sampling
season and potentially indicates a different adaptation strategy of A. longifolia to environmental
conditions [45,55]. Acacia longifolia is known to be a water-spending species, and it increases the stand
transpiration while decreasing the water availability for co-occurring species [45]. In contrast to native
dune species, A. longifolia shows only little stomatal control of water use [55] and it maintains a high
use of resources under drought conditions, which is a novel trait in the studied dune ecosystems [42,45].
The question if and how invasive species handle water stress is highly relevant under climate change
scenarios in Mediterranean ecosystems [110]. Thus, selecting vegetation indices can both increase
classification accuracy and reveal the invader’s adaptation strategies to drought.

Regarding the TCARI2 and DPI indices at the canopy level, A. longifolia was distinguishable by its
higher chlorophyll content. Similarly, greenness was found to be an important factor discriminating
the invasive Arundo donax L. from adjacent riparian vegetation in Portugal, as it produced new fresh
green leaves when water was available during the vegetative period [14]. Acacia longifolia, too, has
a high growth rate and extended growth period [42,55], efficient nutrient acquisition [41] and high
transpiration rates [45] while having a different leaf type (large phyllodes) compared to native species
in this dune ecosystem [23,111]. This was reflected in the slightly, but significantly lower CAI value
for A. longifolia which can be related to less dry, non-photosynthetically active plant material in the
canopy [83,112]. In contrast to directly selecting one specific biochemical parameter, e.g., leaf tannin
content [51], our data mining approach identified suitable vegetation indices from a large set of easily
produced predictors. It enabled a robust and quick classification of the invasive plant A. longifolia, and
gave insights into biochemical, biophysical and ecophysiological traits.

5. Conclusions

We showed that the high-impact invasive species A. longifolia can be distinguished at
leaf and canopy level using vegetation indices derived from field spectral data in the studied
Natura 2000 protected Mediterranean dune ecosystem. The best results in terms of a high detection
and a high reliability were achieved by using non-linear classifiers that can deal with the Hughes
effect based on vegetation indices. Thus, there is high potential for mapping the invader at airborne
and satellite level using multispectral and hyperspectral sensors. Apart from increasing classification
accuracy, choosing vegetation indices gave insights into the adaptation strategy of the water-spending
invader in this semi-arid ecosystem. Multi seasonal studies could further explore the best time
frame for mapping as seasonal variation of biochemical, biophysical and ecophysiological parameters
may affect the spectral separability. The spectral library delivers baseline information that could be
extended further for multiclass approaches to give insights into the separability of other important
species such as other invaders, endemic species, or those protected by national and international
legislation. Moreover, regional scale, high-resolution mapping of the invader may enable quantification
of invasive status of pristine ecosystems, prediction of future invasions and identifications of areas of
high-conservation value.
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