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Abstract

The pea aphid, Acyrthosiphon pisum Harris, (Homoptera: Aphididae) releases the volatile sesquiterpene (E)-b-farnesene (EBF)
when attacked by a predator, triggering escape responses in the aphid colony. Recently, it was shown that this alarm
pheromone also mediates the production of the winged dispersal morph under laboratory conditions. The present work
tested the wing-inducing effect of EBF under field conditions. Aphid colonies were exposed to two treatments (control and
EBF) and tested in two different environmental conditions (field and laboratory). As in previous experiments aphids
produced higher proportion of winged morphs among their offspring when exposed to EBF in the laboratory but even
under field conditions the proportion of winged offspring was higher after EBF application (6.8460.98%) compared to the
hexane control (1.5460.25%). In the field, the proportion of adult aphids found on the plant at the end of the experiment
was lower in the EBF treatment (58.165.5%) than in the control (66.964.6%), in contrast to the climate chamber test where
the numbers of adult aphids found on the plant at the end of the experiment were, in both treatments, similar to the
numbers put on the plant initially. Our results show that the role of EBF in aphid wing induction is also apparent under field
conditions and they may indicate a potential cost of EBF emission. They also emphasize the importance of investigating the
ecological role of induced defences under field conditions.
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Introduction

Aphids are important economic insects in temperate regions,

damaging plants by sucking nutrients from the phloem and

transmitting plant viruses [1,2]. Because of their abundance,

aphids are attacked by a wide range of predators such as ladybirds,

lacewings and hoverfly larvae, all of which showed to influence

strongly the growth and persistence of aphid colonies [3].

In response to a predator direct attack, aphids secrete cornicle

droplets from a pair of tube-like structures on the abdomen called

siphunculi [4–6]. The droplets glue together the predator’s

mouthparts [4], and in addition, they contain an alarm

pheromone, the sesquiterpene (E)-b-farnesene (EBF), which is for

some aphid species the main or only pheromone compound

present [6–11]. EBF triggers various behavioural reactions in

aphids, like withdrawing the stylets from the plant, or dropping off

their host plants [12,13]. EBF may also attract some species of

aphid predators [14–16] and parasitoids [17] and might be used

by plants to deter aphids [18].

Polyphenism is one of the main characteristics of aphids and

during the phase of asexual production in summer, both winged

and unwinged females occur. In the case of the pea aphid,

Acyrthosiphon pisum Harris (Homoptera: Aphididae), wing formation

among offspring is maternally induced when the mother is under

adverse biotic conditions, for example, triggered by crowding, low

host plant quality, or the presence of natural enemies [19–28].

Recently, EBF was also found to mediate indirectly the production

of winged offspring of the pea aphid [29], by increasing the

number of tactile stimuli among individuals of a colony (pseudo

crowding effect) [23,29]. This effect is analogous to the response of

aphids to an increasing colony size (crowding), when the number

of tactile interactions also increases [26]. While predator-induced

wing formation in pea aphids [19,20,24,28,30] and its mediation

by EBF [29] were repeatedly demonstrated in the laboratory, the

importance under natural conditions has so far not been

investigated. It is conceivable that air movements change the

amount and/or concentration of detectable EBF in an aphid

colony, possibly alerting fewer aphids than under laboratory

conditions. In addition, many pea aphids that perceive EBF walk

away from the original plant and often do not survive during

migration because of starvation or ground predators [31]. Both

effects decrease the population density on the plant and,

consequently, may weaken the pseudo crowding effect and the

production of winged morphs. Furthermore, the aphid alarm

pheromone can act as kairomone by attracting natural enemies

[32], and predation would further lower the number of aphids in a

colony and also reduce the pseudo crowding effect [20].

In the current study, we tested the hypothesis that pea aphids

under field conditions also produce higher proportion of winged

offspring after reacting to EBF like observed in laboratory

experiments. Our objective was to determine the role of EBF for

wing induction and aphid fitness under field conditions and to

compare it to a laboratory test. To do this, we exposed colonies

of pea aphids daily to the alarm pheromone under field and
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laboratory conditions, and scored the proportion of winged

offspring and the number of individuals on the plants at the end

of experiment.

Materials and Methods

Plant and aphid material
Pink pea aphids of clone BP [29] were reared on 3-week-old

broad bean plants, Vicia faba L (variety The Sutton; Nickerson-

Zwaan, UK). Plants were cultured in pots (10 cm diameter, 8 cm

high) and covered with air-permeable bags (L6W = 39620 cm,

Armin Zeller, Nachf. Schütz & Co, Langenthal, Switzerland) to

avoid aphid escape. Infested plants were kept in the climate

chamber under constant conditions (16:8 L:D; 20uC; 75% RH).

Aphid lines
Twenty-eight aphid lines were set up as described by Kunert

et al. [29]. One aphid line consisted of the genetically identical

progeny of a single aphid. For one line, one adult aphid was first

placed on a three-week-old broad bean plant, allowed to

reproduce for 48 hr, and then removed from the plant. After

nine days, the daughters (10 aphids per line), now adults, were

transferred to five new plants (two aphids per plant) to avoid

crowding. After 48 hr reproducing, the daughters were removed,

leaving twelve granddaughters per plant. After another six days,

the granddaughters became third- and fourth-instar nymphs and

sixty aphids from each line were transferred to four new broad

bean plants in groups of fifteen aphids. The four plants per line

were randomly allocated to one of four treatments (see below). In

this way, both maternal effects and any effects of the plants on

which aphids were reared were distributed equally over all

treatments.

Experimental design
We tested the effect of EBF on aphid wing induction by

exposing aphid colonies to either artificial EBF (EBF treatment) or

a solvent control (control treatment) three times per day for five

days. The experiment was set up simultaneously in two locations:

in the field and in the climate chamber, resulting in a 2

(pheromone application) 62 (location) factorial design.

Field test. Pairs of plants with aphids (granddaughters) from

the same line were placed at a distance of five metres from one

another and ten metres between pairs along the margins of the

Jena biodiversity field experiment [33] in Jena. The daily means of

temperature ranged from 17.4uC to 20.3uC, relative humidity

ranged from 75.9% to 88.2%, precipitation ranged from

0.007 mm to 0.566 mm, and wind speed ranged from 0.8 m/s

to 21.2 m/s over the 5-day experimental period. One plant in

each pair was allocated to the EBF treatment, the other one to the

control. A toothpick holding a square piece (161 cm) of filter

paper was fixed inside each pot in the soil. To reduce the access of

natural enemies to aphid colonies, all plants were enclosed by

cages, 30 cm in height, made from aluminium mesh (mesh width,

2 mm) fixed using adhesive to a plastic frame of a plant saucer

(25 cm i.d.) from which the bottom was removed. Cages were

sprayed with insect glue (Soveurode, Witasek) and the bottom

edges were pressed into the ground and covered with soil to

prevent predators or other insects to enter the cages.

For five days, 5 ml of EBF solution containing 1000 ng EBF

(0.20 mg EBF per 1 ml hexane; EBF treatment) or 5 ml hexane

(control) were applied three times a day (at 8:00, 13:00 and 18:00)

onto the filter paper of each pot through the mesh of the cages

using a micropipette. The amount of EBF applied was enough to

be perceived by the aphids and to elicit the alarm behaviour under

field conditions. In addition, this amount was also used by Kunert

et al. [29] who discernibly showed that the frequency of EBF

emission per day rather than amount of EBF emitted regulates the

proportion of wing offspring produced.

After five days, the adult aphids on the broad bean plants were

counted and removed. Plants with aphids were covered with

cellophane bags and transferred to the climate chamber with same

conditions described above and kept until all nymphs became L4/

adults. When offspring had reached maturity, all aphids from each

plant were removed from the plant and frozen at -18uC, after

which offspring number and offspring phenotype were counted.

Climate chamber test. The second pair of infested broad

bean plants from each line was kept under climate chamber

conditions (16:8 L:D; 20uC; 75% RH) as a positive control. Plants

were covered with cellophane bags so aphids could not escape.

EBF was applied and aphids were handled exactly as in the field.

Statistical Analysis
All analyses were carried out with the R software version 2.8.1.

The number of adult aphids found on plants after the experiment

and the number of offspring produced were analysed using

generalized linear models (GLM). Because overdispersion was

detected during analysis, a quasibinomial (for proportion of aphids

found on the plants) and quasipoisson (for offspring count data)

error structures were used in our analyses [34,35]. Because of non-

normality of the data, proportions of winged morphs were square

root transformed and analysed by an ANCOVA, using the total

number of offspring as a covariate. In all models, aphid lines were

included as a random effect.

Models were simplified by reducing non-significant interactions

followed by independent variables that were not included in any

significant interaction [36]. Among non-significant independent

variables or interactions with same number of variables, the one

with highest p value was first removed followed by others in a

descending order. After removing a non-significant interaction or

variable, a new model was generated and only accepted if the

removal did not significantly increase deviance comparing to the

previous model after a F test (p.0.05) [37]. Otherwise, the

previous model was retained and the simplification continued with

the next non-significant interaction or variable. When an

interaction of variables was found significant, the corresponding

levels were compared using contrasts [36]. Results are presented as

mean 6 SE.

Results

Proportion of adult aphids found on plants at end of
experiment

One replicate of the field control treatment was removed after

the first day of experiment because no aphid was found on this

plant. In the laboratory, the proportion of adult aphids

(granddaughters) that were found on the plants at the end of

experiment was very high (97.0260.72%) regardless of the

pheromone treatment, i.e. on average less than one aphid died

over the five-day experimental period. In contrast, this proportion

was much lower in the field where on average less than a third of

the 15 aphids were found back on the plant (27.2762.68%,

t108 = 13.939, p,0.001, Fig. 1A).

The application of alarm pheromone resulted in a significant

lower proportion of adult aphids found on the plant at the end of

the experiment (58.0965.50%) compared to the control

(66.9064.59%, t108 = 3.331, p,0.01, Fig. 1B). Although there

was no interaction between the experiment location and

pheromone treatment (F1,108 = 2.22, p = 0.13), we compared the
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proportion of mothers found on the plant in the different

treatments separately for both locations to investigate the possible

negative effects of EBF for aphids. For this purpose, we performed

the same GLM test with a quasibinomial error distribution using

orthogonal contrasts [38]. In the climate chamber, the numbers of

adult aphids found on the plants at the end of the experiment did

not differ between control and EBF treatments (t55 = 8.144,

p = 0.766). However, in the field, the numbers of aphids found

on the plant at the end of experiment were on average only 55% of

the corresponding numbers in the control treatment, i.e. they were

significantly lower (t53 = 4.134, p,0.001). Although cages protect-

ed the plants from natural enemies, some ants were observed in

few cages at the end of experiment.

Total number of offspring
In total, 28273 offspring were counted in the experiment.

Significantly more offspring were recorded in the climate chamber

than in the field (t107 = 10.102, p,0.001), and more offspring were

born in the control than in the EBF treatment (t107 = 4.414;

p,0.001). The interaction between location and pheromone

application was significant (F1,107 = 11.969, p,0.001), i.e. the

difference between control and EBF treatment was dependent on

where the experiment was carried out: a significant difference

between EBF and control was observed under field conditions

(t53 = 76.862, p,0.001; Fig. 2) but not under climate chamber

conditions (t55 = 0.750, p = 0.455; Fig. 2).

Offspring phenotype
Whilst the proportion of winged morphs among the offspring

was higher in the climate chamber compared to the field

(t103 = 1.113; p,0.001), the application of EBF significantly

increased wing induction (t103 = 1.138; p,0.001, Fig. 3). The

interaction between location and pheromone application was also

significant (F1,103 = 38.784, p,0.001, Fig. 3). In the climate

chamber, the proportion of winged morphs among the offspring

was on average 124% higher in the EBF treatment than in the

control (t55 = 10.444, p,0.001, Fig. 3). In the field, the proportion

of winged offspring increased by 600% from the control to the

EBF treatment (t54 = 2.786, p,0.01, Fig. 3).

The interaction among location, pheromone application and

number of offspring was also significant (F2,103 = 13.788; p,0.001,

Fig. 4): in the field, the proportion of winged offspring was not

correlated to the number of offspring in the control treatment

(0.2679+0.0025X, r2 = 0.058, F1,25 = 1.525, p = 0.228, Fig. 4),

while there was a positive correlation in the EBF treatment

(20.420+0.019X, r2 = 0.448, F1,26 = 21.08, p,0.01, Fig. 4). Under

climate chamber conditions, the opposite was observed: the

number of offspring positively affected the proportion of winged

morphs in the control (1.920+0.011X, r2 = 0.209, F1,26 = 7.146,

Figure 1. Proportion of adult pea aphids found on the plant at
the end of the experiment. Aphids were either exposed to A) alarm
pheromone and control (left), and B) under field and climate chamber
conditions (right). Initially, 15 aphids were introduced to each plant and
the proportions of remaining adult aphids were recorded after five days
in the field and in the climate chamber, for both the EBF (black bars)
and control (white bars) treatments. The bars show mean values + SE.
doi:10.1371/journal.pone.0011188.g001

Figure 2. Colony sizes of aphids exposed to alarm pheromone
and control under different conditions at the end of the
experiment. Offspring on each plant were counted after five days of
experiment in the field and in the climate chamber, when aphid
colonies were treated with either control (white bars) or (E)-b-farnesene
(black bars) (F1,107 = 11.969, p,0.001). Bars with different letters are
statistically significant different (P,0.001). The bars show mean
values+SE.
doi:10.1371/journal.pone.0011188.g002

Figure 3. Induction of wing formation in offspring from
colonies exposed to alarm pheromone and control under
different conditions. The proportions of winged morphs among
offspring were recorded in the field and in the climate chamber, for
both the control (white bars) and (E)-b-farnesene (black bars)
treatments (F1,103 = 38.784, p,0.001). Bars with different letters are
statistically significant different (p,0.01). The bars show mean
values+SE.
doi:10.1371/journal.pone.0011188.g003
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p = 0.0126, Fig. 4), but did not in the EBF treatment (9.306-

0.00041X, r2 = 0.011, F1,26 = 0.288, p = 0.596, Fig. 4).

Discussion

While laboratory experiments are an important tool in revealing

ecological mechanisms, field experiments are needed to test the

ecological relevance of the observed effects. Our results show for

the first time that EBF mediates the production of winged pea

aphid offspring along with colony size under field conditions. In

addition, our experiment showed that the proportions of adult

aphids found on the plants at the end of the experiment was not

only lower in the field than in the climate chamber (Fig. 1A), but it

was also negatively affected by the application of EBF (Fig. 1B),

resulting in fewer offspring than in the hexane control (Fig. 2).

While no dead aphid bodies were recovered at the end of the

experiment, it is most likely that aphids not found at the

experiment died in the course of the experiment, i.e. the number

of aphids found on the plant is a measure of aphid survival (see

also below).

Pea aphids trigger the production of winged morphs when in

repeated physical contact with each other, as in the case of high

aphid densities on a plant, which indicates high intraspecific

competition levels (crowding effects; [26]). Therefore, smaller

colonies are less likely to produce winged morphs than larger ones

because of less physical contact between colony members [26]. Yet

the proportion of dispersal morphs was higher in the EBF

treatment, even though only 2.960.5 adults remained on the EBF

treated plant compared to plants treated with hexane in which

5.260.6 adults remained (Fig. 1 and 3). When aphid colonies are

exposed to EBF in laboratory conditions, the proportion of winged

offspring increased with the initial number of aphids on a plant

[39].

The climate chamber data reported here are very similar to

those of the aphid group size of 13 in Kunert et al. [39]. In

contrast, Kunert et al. [39] reported winged offspring production

of 10% (control) and ca. 40% (EBF treatment) when initial aphid

number was two. In our field experiment, the number of adult

aphids put on the plant initially in our field test was higher than

two; the percentage of winged offspring observed was lower than

what was observed in Kunert et al.’s experiment. This indicates

that wing induction in the field is reduced not only by lower

number of mothers (Fig. 1) but also by other factors. Airflow in the

field very likely reduces the amount and concentration of EBF that

reaches aphids, such that possibly only aphids near the source

perceive biologically relevant amounts of EBF, resulting in a

general decrease in the response.

The increase of produced offspring enforced the pseudo

crowding and crowding effects on each plant when EBF or

control hexane was applied, respectively, and, therefore, also

played a positive role in wing induction (cf. [20], Fig. 4). In

addition, the large cages in the field test allow aphids to walk off

the host plant and this might reduce the contact rate among

individuals compared to the smaller cellophane bags in the climate

chamber, where aphids leaving the plant are likely to return to it

immediately. Finally, while the same aphid clone and the same

plant species was used in the present experiment and in the

experiments of Kunert et al. [29], small differences in manipula-

tion may also have influenced the response of the experimental

aphids towards the wing-inducing cues.

In the laboratory, there was no effect of EBF on the number of

adult aphids found on the plant at the end of the experiment,

indicating that the concentrations of EBF or hexane applied were

not toxic to the pea aphids. Both, the location where the

experiment was carried out, and the solution applied, indepen-

dently affected the proportion of aphids that were found on plants

at the end of the experiment. While in the laboratory aphids

enclosed in cellophane bags could not move away far away from

their plants and therefore were likely to find the plant again after

leaving it, aphids in larger field cages were likely to spend more

time searching for their hosts, increasing the possibility for

desiccation or starvation and resulting in an overall decrease in

fecundity [40–42].

A significant reduction in the number of adults on plants treated

with EBF was also made by Wohlers [31] who reported that

when pea aphids were dislodged by exposure to synthetic EBF

they moved towards neighbouring plant models while a small

proportion of aphids climbed back to the original plant. By making

use of the alarm signalling behaviour, Bruce et al. [43] successfully

reduced the aphid population in field plots using plant extracts

containing 70% EBF and a slow-release point sources which

probably resembled the natural emission of EBF from aphids [44].

An additional cost of the alarm pheromone perception might be

the higher predation risk of aphids which left the plant [45].

Although the plants in the field were protected with cages, ants

were able to enter the cages from below; hence it is likely that not

only starvation but also predation contributed to the observed

decrease the numbers of aphids in the field. A relationship between

aphid alarm pheromone and ant aggression was reported before.

In a comprehensive study, Nault et al. [46] exposed several

myrmecophilous and non-myrmecophilous aphid species in a

laboratory setting to ants, predators and alarm pheromone. Ants

near myrmecophilic aphids became very aggressive in the presence

of EBF and increased their rate of attack on aphid predators, but

they did not attack aphids. However, when an alarm pheromone

was applied to colonies of untended aphid species, ants became

aggressive towards the aphids and sometimes carried them off the

Figure 4. Wing induction of offspring in different colony sizes
exposed to alarm pheromone and control under different
conditions. The square root transformed proportion of winged
offspring as a function of the number of offspring in the field and in
the climate chamber, treated with either EBF or hexane. White circles
represent field colonies treated with hexane control (0.2679+0.0025X,
r2 = 0.058, F1,25 = 1.525, p = 0.228); black circles are field colonies treated
with EBF (20.420+0.019X, r2 = 0.448, F1,26 = 21.08, p,0.01); white
triangles are chamber colonies treated with hexane control
(1.920+0.011X, r2 = 0.209, F1,26 = 7.146, p = 0.0126); and black triangles
are chamber colonies treated with EBF (9.306-0.00041X, r2 = 0.011,
F1,26 = 0.288, p = 0.596).
doi:10.1371/journal.pone.0011188.g004
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plant [46]. Similar observations of aggressive behaviour of aphid-

attending ants towards an EBF source were made in the field

[47,48].

Costs of alarm signalling was recently discussed by Verheggen

et al. [49], who demonstrated that pea aphids regulate the

emission of EBF according to social environment, with small

colonies releasing less EBF than large colonies. In this context,

aphids reduce the predation risk by not attracting natural enemies

and remaining inconspicuous while they reduce physiological cost

to produce EBF.

In conclusion, our study shows that EBF mediates wing

induction in pea aphid colonies not only under laboratory but

also under natural conditions. The experiment under natural

conditions also pointed to the importance of colony size in

interaction with alarm signalling to produce winged offspring by

the pseudo crowding effect. Now since we know that wing

induction in aphids also occur under natural conditions it is

important to investigate whether there is an ecological cost

involved in alarm pheromone emission in detail.
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